Query Performance Tuning | CONFIDENTIAL

QUERY PERFORMANCE
TUNING GUIDE

Spark • T-SQL • DAX • Optimization • Monitoring

Version 1.0 | January 2026

Table of Contents

1. Spark Performance
1.1 Partition Strategy
Optimal partitioning
df.repartition(200, 'date_key') # For joins on date
df.coalesce(10) # Reduce partitions for small output

Write with partitioning
df.write \
 .partitionBy('year', 'month') \
 .mode('overwrite') \
 .saveAsTable('gold.fact_claims')
1.2 Caching
Cache frequently used DataFrames
dim_member = spark.table('gold.dim_member').cache()

Use after multiple operations
result1 = df.join(dim_member, 'member_id')
result2 = df.join(dim_member, 'member_id')

Unpersist when done
dim_member.unpersist()
1.3 Broadcast Joins
from pyspark.sql.functions import broadcast

Small table (<100MB) broadcast
result = large_df.join(
 broadcast(small_lookup_df),
 'key_column'
)

2. T-SQL Optimization
2.1 Query Patterns
-- Use CTEs for readability and reuse
WITH filtered_claims AS (
 SELECT * FROM fact_claims
 WHERE service_date >= '2024-01-01'
)
SELECT region, SUM(amount)
FROM filtered_claims
GROUP BY region;

-- Avoid SELECT *
SELECT member_id, claim_amount FROM claims;
2.2 Statistics
-- Update statistics for better plans
UPDATE STATISTICS gold.fact_claims;

-- View query plan
EXPLAIN SELECT * FROM claims WHERE amount > 1000;
2.3 Index-like Optimizations
1. Use V-Order for columnar optimization
1. Partition tables by date for range queries
1. Use Z-Order for filter columns
1. Keep fact tables narrow

3. DAX Optimization
3.1 Best Practices
// Use variables
Profit =
VAR Revenue = SUM(Sales[Amount])
VAR Cost = SUM(Sales[Cost])
RETURN Revenue - Cost

// Avoid nested CALCULATE
// Bad:
// CALCULATE(CALCULATE([Measure], Filter1), Filter2)
// Good:
CALCULATE([Measure], Filter1, Filter2)
3.2 Common Anti-Patterns
1. Avoid: FILTER on entire tables
1. Avoid: Complex iterators (SUMX on large tables)
1. Avoid: Bi-directional relationships
1. Avoid: High cardinality columns in model
1. Use: Direct column filters when possible

4. Performance Monitoring
4.1 Key Metrics
	Metric
	Description
	Target

	Query duration
	Time to execute
	< 30 seconds

	Shuffle read/write
	Data movement
	Minimize

	Spill to disk
	Memory overflow
	Zero

	Partition skew
	Uneven distribution
	< 2x average

4.2 Spark UI Analysis
1. Check stage duration and task distribution
1. Look for skew in task times
1. Monitor shuffle read/write sizes
1. Identify slow stages for optimization
1. Review DAG for unnecessary operations

5. Optimization Checklist
5.1 Spark
1. ☐ Appropriate partition count (2-4x cores)
1. ☐ Broadcast small tables (<100MB)
1. ☐ Filter early in transformations
1. ☐ Use built-in functions over UDFs
1. ☐ Cache reused DataFrames
5.2 Warehouse
1. ☐ Tables V-Ordered
1. ☐ Statistics up to date
1. ☐ Appropriate partitioning
1. ☐ Queries use filters effectively
1. ☐ No unnecessary columns selected
5.3 Power BI
1. ☐ Star schema design
1. ☐ Variables in complex measures
1. ☐ No bi-directional relationships
1. ☐ Aggregation tables for large facts
1. ☐ Direct Lake mode enabled

Appendix: Document Information
	Document Title
	Query Performance Tuning Guide

	Version
	1.0

	Last Updated
	January 2026

Page of
